A novel substrate mimetic inhibitor of PKB/Akt inhibits prostate cancer tumor growth in mice by blocking the PKB pathway.

نویسندگان

  • Pninit Litman
  • Osnat Ohne
  • Shirly Ben-Yaakov
  • Liron Shemesh-Darvish
  • Tamar Yechezkel
  • Yosef Salitra
  • Shai Rubnov
  • Ilana Cohen
  • Hanoch Senderowitz
  • Dvora Kidron
  • Oded Livnah
  • Alexander Levitzki
  • Nurit Livnah
چکیده

We describe a novel, potent peptide substrate mimetic inhibitor of protein kinase B (PKB/Akt). The compound selectively kills prostate cancer cells, in which PKB is highly activated, but not normal cells, or cancer cells in which PKB is not activated. The inhibitor induces apoptosis and inhibits the phosphorylation of PKB substrates in prostate cancer cell lines and significantly increases the efficacy of chemotherapy agents to induce prostate cancer cell death, when given in combination. In vivo, the inhibitor exhibits a strong antitumor effect in two prostate cancer mouse models. Moreover, treated animals develop significantly less lung metastases compared to untreated ones, and the effect is accompanied by a significant decrease in blood PSA [prostate-specific antigen] levels in treated animals. This compound and its potential analogues may be developed into novel, potent, and safe anticancer agents, both as stand-alone treatment and in combination with other chemotherapy agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Differential activation of the phosphatidylinositol 3'-kinase/Akt survival pathway by ionizing radiation in tumor and primary endothelial cells.

Ionizing radiation induces an intracellular stress response via activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt survival pathway. In tumor cells, the PI3K/Akt pathway is induced through activation of members of ErbB receptor tyrosine kinases. Here, we investigated the receptor dependence of radiation-induced PI3K/Akt activation in tumor cells and in endothelial cells. The integrity ...

متن کامل

Antiapoptotic signaling in LNCaP prostate cancer cells: a survival signaling pathway independent of phosphatidylinositol 3'-kinase and Akt/protein kinase B.

Constitutive activation of the phosphatidylinositol 3'-kinase (PI3 kinase)-Akt/protein kinase B (PKB) "survival signaling" pathway is a likely mechanism by which many cancers become refractory to cytotoxic therapy. In LNCaP prostate cancer cells, the PTEN phosphoinositide phosphatase is inactivated, leading to constitutive activation of Akt/PKB and resistance to apoptosis. However, apoptosis an...

متن کامل

Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts.

Integrin-linked kinase (ILK) couples integrins and growth factors to downstream signaling pathways involving phosphatidylinositol 3-kinase, protein kinase B/Akt (PKB/Akt), and glycogen synthase kinase-3beta. The anticancer effects of ILK inhibitor QLT0254 were tested in an orthotopic primary xenograft model of pancreatic cancer. The pharmacodynamic effects of a single dose of QLT0254 on the pho...

متن کامل

Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway

Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 46 16  شماره 

صفحات  -

تاریخ انتشار 2007